TEUS.me

 
 

 

이전 글에서 유클리드 기하학을 이용해 삼각형 내부의 삼각형의 면적을 구해봤는데, 결국 2% 부족한 답이 나왔다.

답은 맞는데, 그 답이 왜 맞는지를 완벽하게 답하지 못한 것이다.

 

그런데, 해석기하학으로는 훨씬 더 쉽게 답을 낼 수 있다.

 

세 꼭지점의 좌표를 각각 \( A(0, 0), B(6, 0), C(3, 3 \sqrt{3} ) \) 이라 하자.

그럼 대변의 \( \frac {1}{3} \) 지점의 좌표 들은 각각 \( D(4, 2 \sqrt{3}), E(1, \sqrt{3}), F(4, 0) \)이다.

 

 

\( \overleftrightarrow{AD} \)의 방정식은 다음과 같다.

 

\( y = \frac{\sqrt{3}}{2}x \)

 

\( \overleftrightarrow{BE} \)의 방정식은 이렇다.

 

\( y = \frac{-\sqrt{3}}{5}x+\frac{6\sqrt{3}}{5} \)

 

\( \overleftrightarrow{CF} \)의 방정식은 이렇다.

 

\( y = -3\sqrt{3}x + 12\sqrt{3} \)

 

여기서 \( G \), \( H \)는 위 식들의 연립방정식을 풀면 된다.

각각의 좌표는 다음과 같다.

 

\( G( \frac{24}{7}, \frac{12\sqrt{3}}{7}) \), \( H( \frac{12}{7}, \frac{6\sqrt{3}}{7}) \).

 

즉, \( \overline {GH} \)의 길이는 \( \frac {6}{\sqrt{7}} \)이 된다.

 

바깥쪽 삼각형의 한 변의 길이는 \( 6 \)이므로 전체 면적은 작은 삼각형의 7배가 된다.

 

 

공유하기

facebook twitter kakaoTalk kakaostory naver band

댓글

비밀글모드